60 research outputs found

    A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson's disease

    Get PDF
    Electrophysiological studies suggest that rest tremor in Parkinson's disease is associated with an alteration of oscillatory activity. Although it is well known that tremor depends on cortico-muscular coupling, it is unclear whether synchronization within and between brain areas is specifically related to the presence and severity of tremor. To tackle this longstanding issue, we took advantage of naturally occurring spontaneous tremor fluctuations and investigated cerebral synchronization in the presence and absence of rest tremor. We simultaneously recorded local field potentials from the subthalamic nucleus, the magnetoencephalogram and the electromyogram of forearm muscles in 11 patients with Parkinson's disease (all male, age: 52-74 years). Recordings took place the day after surgery for deep brain stimulation, after withdrawal of anti-parkinsonian medication. We selected epochs containing spontaneous rest tremor and tremor-free epochs, respectively, and compared power and coherence between subthalamic nucleus, cortex and muscle across conditions. Tremor-associated changes in cerebro-muscular coherence were localized by Dynamic Imaging of Coherent Sources. Subsequently, cortico-cortical coupling was analysed by computation of the imaginary part of coherency, a coupling measure insensitive to volume conduction. After tremor onset, local field potential power increased at individual tremor frequency and cortical power decreased in the beta band (13-30 Hz). Sensor level subthalamic nucleus-cortex, cortico-muscular and subthalamic nucleus-muscle coherence increased during tremor specifically at tremor frequency. The increase in subthalamic nucleus-cortex coherence correlated with the increase in electromyogram power. On the source level, we observed tremor-associated increases in cortico-muscular coherence in primary motor cortex, premotor cortex and posterior parietal cortex contralateral to the tremulous limb. Analysis of the imaginary part of coherency revealed tremor-dependent coupling between these cortical areas at tremor frequency and double tremor frequency. Our findings demonstrate a direct relationship between the synchronization of cerebral oscillations and tremor manifestation. Furthermore, they suggest the feasibility of tremor detection based on local field potentials and might thus become relevant for the design of closed-loop stimulation systems

    Longitudinal Recordings Reveal Transient Increase of Alpha/Low-Beta Power in the Subthalamic Nucleus Associated With the Onset of Parkinsonian Rest Tremor

    Get PDF
    Functional magnetic resonance imaging studies suggest that different subcortico-cortical circuits control different aspects of Parkinsonian rest tremor. The basal ganglia were proposed to drive tremor onset, and the cerebellum was suggested to be responsible for tremor maintenance (“dimmer-switch” hypothesis). Although several electrophysiological correlates of tremor have been described, it is currently unclear whether any of these is specific to tremor onset or maintenance. In this study, we present data from a single patient measured repeatedly within 2 years after implantation of a deep brain stimulation (DBS) system capable of recording brain activity from the target. Local field potentials (LFPs) from the subthalamic nucleus and the scalp electroencephalogram were recorded 1 week, 3 months, 6 months, 1 year, and 2 years after surgery. Importantly, the patient suffered from severe rest tremor of the lower limbs, which could be interrupted voluntarily by repositioning the feet. This provided the unique opportunity to record many tremor onsets in succession. We found that tremor onset and tremor maintenance were characterized by distinct modulations of subthalamic oscillations. Alpha/low-beta power increased transiently immediately after tremor onset. In contrast, beta power was continuously suppressed during tremor maintenance. Tremor maintenance was additionally associated with subthalamic and cortical power increases around individual tremor frequency. To our knowledge, this is the first evidence of distinct subthalamic LFP modulations in tremor onset and tremor maintenance. Our observations suggest the existence of an acceleration signal for Parkinsonian rest tremor in the basal ganglia, in line with the “dimmer-switch” hypothesis

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    ADAPTIVE IDENTIFICATION OF OSCILLATORY BANDS FROM SUBCORTICAL NEURAL DATA

    No full text
    Neural oscillations in various distinct frequency bands and their interrelations yield high temporal resolution signatures of the human brain activity. This study demonstrates solutions to some of the common challenges in the analysis of neurophysiological data by means of subthalamic local field potentials (LFP) acquired form patients with Parkinson's Disease (PD) undergoing deep brain stimulation therapy. Multivariate empirical mode decomposition (MEMD), being a data-driven method suitable for multichannel data, is employed. This method allows identification of oscillatory bands without the requirement of fixed a priori basis functions. Our study focuses on two issues: (i) Determination of data specific frequency bands and revealing the weak inconspicuous high frequency components in the data and (ii) validation of the biological meaningfulness of the MEMD oscillatory components via phase-amplitude coupling as previously shown to be inherent in subcortical PD LFP data

    Social preferences in the public goods game–An Agent-Based simulation with EconSim

    No full text
    Using a reinforcement-learning algorithm, we model an agent-based simulation of a public goods game with endogenous punishment institutions. We propose an outcome-based model of social preferences that determines the agent’s utility, contribution, and voting behavior during the learning procedure. Comparing our simulation to experimental evidence, we find that the model can replicate human behavior and we can explain the underlying motives of this behavior. We argue that our approach can be generalized to more complex simulations of human behavior

    Modulation of central thalamic oscillations during emotional-cognitive processing in chronic disorder of consciousness

    No full text
    We report on thalamic recordings in a patient with chronic disorder of consciousness (DOC). Implantation of central thalamic deep brain stimulation (CT-DBS) electrodes was chosen, as this treatment has been reported to display beneficial effects with respect to behavioural responsiveness in DOC. Local field potential (LFP) oscillations were recorded from central thalamic electrodes and their changes elicited by speech stimuli consisting either of familiar voices addressing the patient or unfamiliar non-addressing phrases were studied. In response to familiar-addressing speech we observed modulation of oscillatory activity in the beta and theta band within the central thalamus accompanied by an increase in thalamocortical coherence in the theta band. Furthermore, the theta phase was coupled to the amplitude of gamma locally in the thalamus. These findings indicate a local and long-range cross-frequency response which is not only indicative of the principle involvement of the central thalamus in processing emotional and cognitive information, but also point towards intact physiological functions that may serve as a marker in diagnosing DOC patients and determining novel targets and parameters concerning therapeutic efforts

    Parkinsonian Rest Tremor Is Associated With Modulations of Subthalamic High-Frequency Oscillations

    No full text
    BackgroundHigh frequency oscillations (>200 Hz) have been observed in the basal ganglia of PD patients and were shown to be modulated by the administration of levodopa and voluntary movement
    • 

    corecore